Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
Hal-Hal Khusus
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
Invers Dari Fungsi Komposisi
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
Fungsi Invers
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
f : A ® B
f : A ® B
Relasi
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
A = {1,2,3,4} ; B = {a,b,c}
R = {(2,a) ; (4,a) ; (4,c)}
Domain = {2,4}
Range = {a,c}
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
FUNGSI ASAL | FUNGSI INVERS |
f(x) = ax+b ; a ¹ 0 | f-1(x) = (x-b)/a ; a ¹ 0 |
f(x) = (ax+b)/(cx+d) ; x ¹ -d/c | f-1(x) = (-dx+b)/(cx-a) ; x ¹ a/c |
f(x) = ax² + bx + c ; a ¹ 0 | f-1(x) = (-b+Ö(b²-4a(c-x))/2a ; a ¹ 0 |
f(x) = a log cx ; a > 0 ¹ 1 ; cx>0 | f-1(x) = ax/c ; c ¹ 0 |
f(x) = acx ; a > 0 ¹ 1 | f-1(x) = alog x1/c = 1/c alog x ; c¹0 |
Keterangan : fungsi invers ini ada, jika syarat-syaratnya terpenuhi
Fungsi kuadrat secara umum tidak mempunyai invers, tetapi dapat mempunyai invers jika daerah definisinya dibatasi.
f(x) = x² untuk X > 0 ® f-1(x) = Öx untuk X > 0Invers Dari Fungsi Komposisi
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
(g o f)-1 (x) = (f-1 o g-1)(x)
contoh: - Tentukan diagram fungsi di bawah ini ada inversnya atau tidak
- Tentukan grafik di bawah ini mempunyai invers/tidak !
CARA MENENTUKAN SUATU GRAFIK MEMPUNYAI INVERS/TIDAK
Tarik sembarang garis sejajar sumbu x, bila memotong grafik hanya di satu titik, maka grafik tersebut mempunyai invers. Bila tidak demikian, maka grafik tersebut tidak mempunyai invers
- Diketahui f: R ® R
f(x) = 2x - 3
Tentukan f-1 (x) !
Jawab:
f one one onto
sehingga f mempunyai invers
misalkan y = image dari x
y = f(x)
y = 2x-3 (yang berarti x = f-1(y))
x = (y+3)/2
f-1(x) = (x+3)/2 - Diketahui f: A ® B
f(x) = (x - 2)/(x - 3)
dengan A = {R - {3}} dan B = {R - {-1}}
(baca: A adalah himpunan bilangan riil kecuali 33)
Tentukan f-1(x)
Jawab:
y = (x - 2)/(x - 3)
y(x - 3) = x - 2
yx - 3y = x - 2
x(y - 1) = 3y - 2
x = (3y - 2)/(y - 1) ® f-1(x) = (3x - 2)/(x - 1)
Fungsi Invers
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
f : A ® B
Bila b Î B, maka invers dari elemen b (dinyatakan dengan f-1 (b)) adalah elemen A yang mempunyai pasangan b, atau
f-1 (b) = {x ½ x Î A, f(x) = b}
Jika f adalah fungsi dari A ® B, maka f mempunyai fungsi invers f-1 :A ® B jika dan hanya jika f adalah one one onto / bijektif / korespondensi 1-1
ket : f : y = f(x) cara mencari fungsi invers f-1 : x = f(y) ® nyatakan x dalam y |
TEOREMA
f : A ® B dan f-1 : B ® A
f : A ® B dan f-1 : B ® A
f-1 o f : A ® A : fungsi indentitas di A
f f-1
A ® B ® A
(f-1 o f)
f f-1
A ® B ® A
(f-1 o f)
f o f-1 : B ® B : fungsi identitas di B
f-1 f
B ® A ® B
(f o f-1)
f-1 f
B ® A ® B
(f o f-1)
Komposisi Fungsi Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers |
Anggap f : A ® B dan g : B ® C
Didapat fungsi baru (g o f) : A ® C
yang disebut komposisi fungsi dari f dan g
Didapat fungsi baru (g o f) : A ® C
yang disebut komposisi fungsi dari f dan g
h = g o f
(g o f) (x) = g (f (x))
(g o f) (x) = g (f (x))
® yaitu dengan mengerjakan f(x) terlebih dahulu
ket : image f merupakan domain bagi g.
ket : image f merupakan domain bagi g.
contoh:
1. f:A ® B; g:B ® C
(g o f)(a) = g (f(a)) = g(y) = t
(g o f)(b) = g (f(b)) = g(z) = r
(g o f)(c) = g (f(c)) = g(y) = t
(g o f)(a) = g (f(a)) = g(y) = t
(g o f)(b) = g (f(b)) = g(z) = r
(g o f)(c) = g (f(c)) = g(y) = t
2. f: R ® R ; f(x) = x²
g: R ® R ; g(x) = x + 3 R=riil
maka
(f o g)(x) = f(g(x)) = f(x+3) = (x+3)² = x² + 6x + 9
(g o f)(x) = g(f(x)) = g(x²) = x² + 3
Bila x=2, maka
(f o g)(2) = f(g(2)) = f(5) = 25
(g o f)(2) = g(f(2)) = g(4) = 7
3. Diketahui [rumus]
jika (f o g)(x) = x²
Tentukan g(x) !
jawab:
[rumus]
g: R ® R ; g(x) = x + 3 R=riil
maka
(f o g)(x) = f(g(x)) = f(x+3) = (x+3)² = x² + 6x + 9
(g o f)(x) = g(f(x)) = g(x²) = x² + 3
Bila x=2, maka
(f o g)(2) = f(g(2)) = f(5) = 25
(g o f)(2) = g(f(2)) = g(4) = 7
3. Diketahui [rumus]
jika (f o g)(x) = x²
Tentukan g(x) !
jawab:
[rumus]
SIFAT
Bila f : A ® B; g : B ® C ; h : C ® D
maka
(f o g) ¹ (g o f) : tidak komutatif
(h o g) o f = h o (g o f) : asosiatif
(h o g) o f = h o (g o f) : asosiatif
Jenis-Jenis Fungsi Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers |
ONE ONE (INJEKTIF) Tidak ada dua elemen yang berlainan di A, yang mempunyai pasangan yang sama di B. | |
ONTO (SURJEKTIF) Semua elemen di B merupakan peta dari elemen-elemen A (Range A = B atau f(A) = B) | |
ONE-ONE (BIJEKTIF)/KORESPONDENSI 1-1 |
contoh:
- Nyatakan diagram di bawah ini, menyatakan fungsi/bukan !
A = {a,b,c} dan B = {x,y,z}
bukan bukan fungsi fungsi
- Nyatakan diagram di bawah ini, menyatakan fungsi atau bukan !
a. y = 3 - x b. y = x² c. y = x
a. Fungsi b. Fungsi c. Fungsi
d. x = y² e. y = sin x f. x² + y² = 25
CARA MENENTUKAN SUATU GRAFIK ADALAH FUNGSI ATAU BUKAN
Tarik sembarang garis lurus sejajar sumbu y. Bila hanya memotong di satu titik pada grafik, maka grafik tersebut merupakan fungsi. Bila tidak demikian maka grafik tersebut bukan merupakan fungsi.
- Bila V = {-2,-1,0,1,2}
g : V ® R; R = riil
g(x) = x² + 1
Tentukan range !!!
Jawab:
Domain = {-2, -1, 0, 1, 2}
Image dari g adalah :
g(-2) = 5
g(-1) = 2
g(0) = 1
g(1) = 2
g(2) = 5
maka range = {1, 2, 5}
- Tentukan domain dan range dari y = Ö(x - 1)
syarat : (x - 1) ³ 0
Jawab :
D = { x ½ x ³ 1}
R = { y ½ y ³ 0}
- Tentukan range dari f(x) = x² pada domain [1, -4]
Jawab:
Domain : f(x) = x²
-1 £ x £ 4
0 £ x £ 16
0 £ y £ 16
Range : [0, 16]
Fungsi Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers |
Suatu pemetaan / fungsi dari himpunan A ke himpunan B adalah suatu relasi khusus sedemikian rupa sehingga, setiap anggota A dipasangkan dengan tepat satu anggota B.
ditulis f : A ® B
- Himpunan A disebut DOMAIN fungsi, dan himpunan B disebut CODOMAIN fungsi.
- Bila a Î A, maka b Î B yang menyatakan pasangan dari A, disebut image (peta) dari A.
ditulis f(a) = b
- Kumpulan dari image-image a Î A di B, membentuk range fungsi.
range = f(A)
Relasi
Matematika Kelas 1 >Relasi Fungsi / Komposisi Fungsi-Fungsi Invers
Hubungan/relasi dari himpunan A ke himpunan B adalah suatu pemasangan anggota-anggota A dengan anggota-anggota B.
A. SEBUAH RELASI R TERDIRI DARI:
- Himpunan A
- Himpunan B
- Sebuah kalimat terbuka P(x,y) yang menyatakan hubungan antara himpunan A dengan himpunan B.
Dimana x bersesuaian dengan a Î A dengan y bersesuaian dengan b Î B.
® Bila P(a,b) betul maka a berelasi dengan b. Ditulis a R b
® Bila tidak demikian maka a R b
- Himpunan Pasangan Berurutan (a,b)
- Kalimat terbuka P(x,y)
- Diagram cartesius ( diagram A x B )
- Diagram panah
® bila R adalah sebuah relasi, maka himpunan dari relasi ini adalah:
R = {(a,b) ½ a Î A; b Î B; P(a,b) adalah betul}
Ket: Jika A=B, maka P(x,y) mendefinisikan sebuah relasi di dalam A.
contoh :
R = (A,B, P(x,y))
A = {2,3,4}
B = {3,4,5,6}
P(x,y) menyatakan x pembagi y
Himpunan penyelesaian relasi ini adalah
a. Himpunan pasangan berurutan
R = {(2,4), (2,6), (3,3), (3,6), (4,4)}
b. Diagram cartesius
c. Diagram panah
Setiap Relasi dari A ke B, mempunyai relasi R-1 dari B ke A yang didefinisikan sebagai
R-1 = {(b,a) ½ (a,b) Î R}
contoh:
A = {1,2,3}; B = {a,b}
R = {(1,a), (1,b), (3,a)} relasi dari A ke B
R-1 = {(a,1), (b,1), (a,3)} relasi invers dari B ke A
R = {(1,a), (1,b), (3,a)} relasi dari A ke B
R-1 = {(a,1), (b,1), (a,3)} relasi invers dari B ke A
DOMAIN DAN RANGE
Domain (daerah asal) dari suatu relasi R adalah himpunan elemen pertama dari pasangan berurutan elemen R.
Domain = { a ½ a Î A, (a,b) Î R }
Range (daerah hasil) dari suatu relasi R adalah himpunan elemen kedua dari pasangan berurutan elemen R.
Range = {b ½ b Î B, (a,b) Î R}
contoh:A = {1,2,3,4} ; B = {a,b,c}
R = {(2,a) ; (4,a) ; (4,c)}
Domain = {2,4}
Range = {a,c}
sangat bermanfaat,
BalasHapusterima kasih...
iya sam-sama..semoga bisa membantu...mhon maaf atas tidak munculnya gambar di artikel ini
BalasHapus